

Solutions and Challenges - Electric Machines for Aerospace and Automotive Applications

Mircea Popescu, PhD, Fellow IEEE

March 2018

Introduction

Motivation:

- Transport electrification is seen as main solution to reduce CO2 emissions
- Increased demand of mechanical energy can be provided by electrical energy
- Best energy conversion systems: electrical machines + power electronics + batteries

Solutions:

- Aerospace, automotive and marine propulsion to become hybrid and full electric
- Automotive industry most advanced, all larger OEMs and Tier 1 companies involved
- Aerospace industry less details on advances, players such GE, Boeing, Airbus, Rolls-Royce, Siemens, NASA are involved
- Main problems:
 - Battery capacity how much electrical energy can we store?
 - Weight (aerospace only)
 - Market demand/cost

PENETRATION OF ELECTRICAL SYSTEMS BY AIRCRAFT TYPE

Many aircraft now employ electric systems, and/or a mix of hydraulic and electric systems.

	Boeing 737	A380	Boeing 787	A350	F-35 JSF
Environmental Control System	EHPF	HPF	EHPF	EHPF	EHPF
Flight Control System	EHPFE	H PF	EHPF	EHPF	EHPF
Landing Gear ·····	·EHPF·····E	HPF	EHPF	EHPF	···EHPF······
Wheels & Brakes	·EHPF······E	HPF	EHPF	EHPF	···EHPF······
Ice Protection	EHPF	HPF	EHPF	EHPF	EHPF
Thrust Reverser	EHPF	HPF	EHPF	E H P F ···	···EHPF······
E Electric H Hydraulic	P Pneumatic F	Fuel			

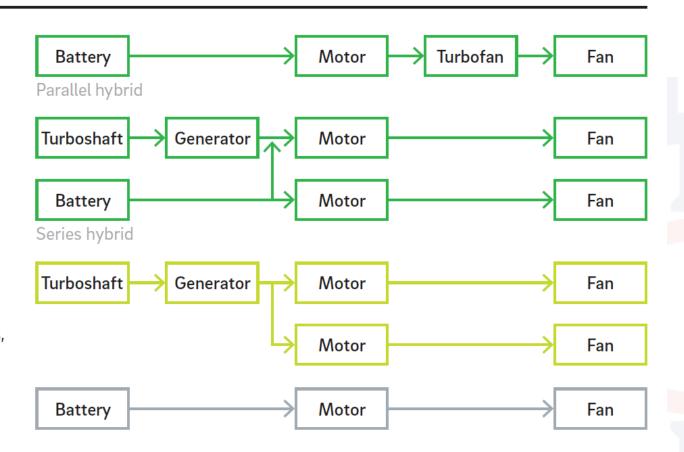
Source: Airbus, Boeing, Lockheed Martin, Roland Berger

ELECTRICAL PROPULSION ARCHITECTURES

There are three main architectures for Electrical Propulsion.

Hybrid-electric

Hybrid-electric is one of two architectures – Parallel or Series hybrid. Additional electric energy can be used for acceleration and in times of high power demand, and bi-directional flow of power is possible between the generator and battery.


Turbo-electric

The kinetic energy of a turbo shaft is transformed into electric energy via a generator to drive multiple, distributed fans, with the fans driven by electric motors.

All electric

One, or multiple, fans are driven by electric motors with energy stored in a battery.

Source: NASA, Roland Berger

Electrification of aircraft systems brings benefits across market segments

Vortical	Taka	Off and	Landing
verucar	Take-	·OH allu	Lanuniu

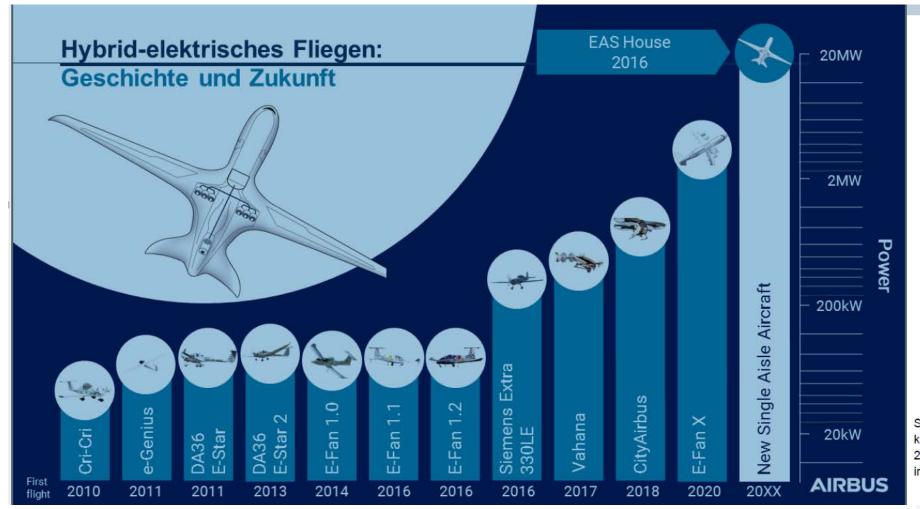
Fixed Wing

Non-Propulsive Energy

improved performance
 mandatory step for
 hybridization

- Manage aircraft loads and engine offtakes in real-time
- Load balancing and optimisation
- Simpler system with improved reliability
- Assist engine during transient operation through power injection

Hybrid-Electric
Propulsion - new
missions, new
markets, & improved
performance


- Urban operation through system redundancy and low noise
- Competitivity through lower cash operating cost
- Simplified tilt-wing for longer range

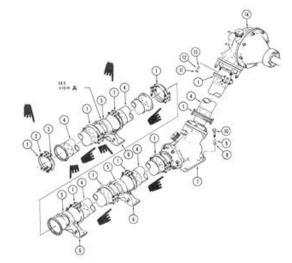
- Higher efficiency opens up aircraft
 design space BLI / distributed propulsion
- Lower cost elimination of high cost component
- Higher utilisation lower noise

Source: Glen Llewllyn, Airbus, 2017, Koln

Airbus-Siemens Collaboration Hybrid- electric propulsion roadmap

Source: Paul Eremenko's keynote address at the 2017 AIAA AVIATION Forum in Denver, June 2017

Airbus-Siemens Collaboration Hybrid- electric


	SP260D 2015		SP200D 2017
Continuous Power	260 kW		204 kW
Rotational Speed	2500 RPM non-geared		1300 RPM non-geared
Continuous Torque	1000 Nm		1500 Nm
Mass	50 kg		49 kg
Torque to Mass Ratio	20 Nm/kg	Increase by 50%	30.6 Nm/kg
Inverter Type	Si		SiC

Source: Dr. Frank Anton, Siemens AG eAircraft, 2017, Koln

Motor Design Limited

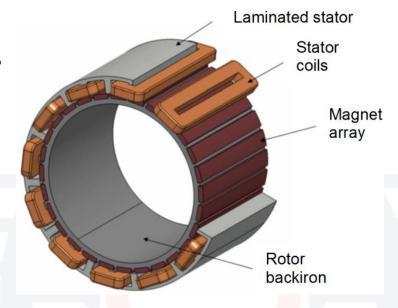
Fault-tolerant aircraft propulsion motor

Mechanical power transmission: Two gearboxes, supercritical shaft

Electrical power transmission:
Direct drive electrical machine and cable

Source: ELETAD, Cleansky 2012-2014 program

Fault-tolerant aircraft propulsion motor



Dual stator Axial-flux

Source: ELETAD, Cleansky 2012-2014 program

Internal rotor Radial-flux

- Axial separation with 4 electro-magnetically independent stages
- Limited axial thermal interaction between stages
- Four separate rotors on a common shaft

- Circumferential separation with minimal winding mutual coupling
- Thermal interactions via back iron and casing
- Design uses a single shared rotor

Fault-tolerant aircraft propulsion motor

Axial- and radial-flux prototypes realisations have near identical active mass

Active component	Axial-flux	Radial-flux
Stator core	40 %	34 %
Winding copper	36 %	32 %
Permanent magnet	24 %	25 %
Rotor back iron	N/A	9 %

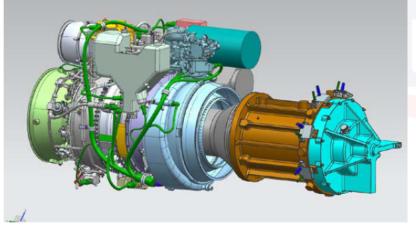
 Radial flux has configuration benefits: lower outer diameter and a large central void to accommodate pitch mechanisms

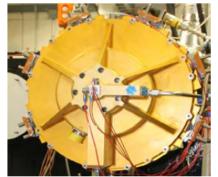
> Source: ELETAD, Cleansky 2012-2014

program

Honeywell Turbine Engines and Electric Power Products

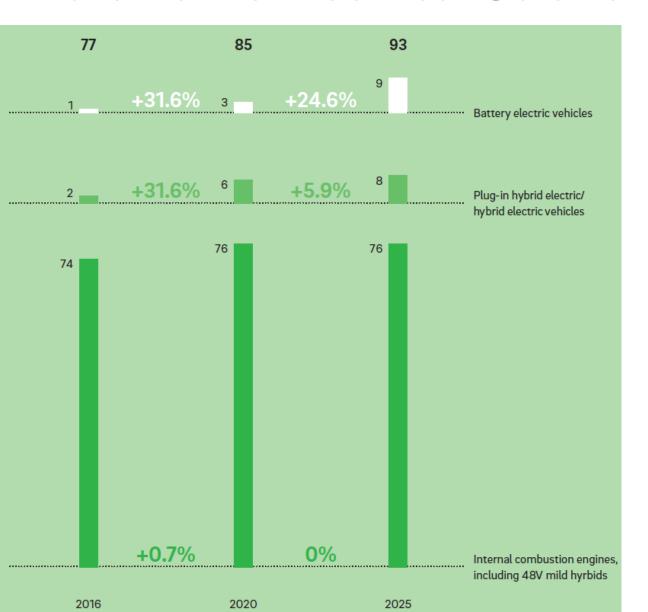
Source: C. Anghel, Honeywell, 2017, Koln




Honeywell 1MW Aerospace Generator

- High power, high efficiency generator ideal for turbo-electric applications
- Tested to high power levels, more testing underway

Rating	1 MW continuous (after rectification)
Voltage	234 Vac or 300 Vdc or 600 Vdc (after rectification)
Speed	19,000 rpm (20,000 rpm overspeed)
Weight	126.5 Kg (279 lbs) (generator only)
Design efficiency	98% at rated load
Cooling	Oil conduction and spray
Туре	Wound field synchronous with rotating rectifiers
Poles	8 (main machine)
Output winding	2 X 3-phase Y with 30° electrical shift
Rectification	Passive external



Source: C. Anghel, Honeywell, 2017, Koln

Automotive Electrical Solutions

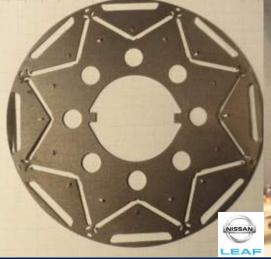
Global light vehicle production [m vehicles]

- > Range of configurations under development
 - Mild, Series, Parallel and Plugin Hybrid
 - Battery Electric and Range Extender
- ➤ Main design drivers:
 - > Efficiency
 - Power Density
 - > Cost
- ➤ To make optimum designs we need to quickly calculate the efficiency map and then allow fast complex drive cycle transient thermal analysis

E. Grunditz and T. Thiringer – IEEE Transactions on

Transportation Electrification, VOL. 2, NO. 3, SEPTEMBER MOTOR
2016, p. 270 - 289

	EM Motor	EM Max. Torque	EM Max. Power	EM Cont. Power	EM Speed at max. Torque	EM Speed at max. power	EM Max. Speed	EM	Transm.
Model	type	(Nm)	(kW)	(kW)	(rpm)	(rpm)	(rpm)	Cooling	Ratio
fortwo	PM [106]	130 [106]	55 [106]	35 [106]				Water [108]	9.922 [181]
BRABUS	PM [109]	135 [109]	60 [109]	35 [109]					
iQ EV	PMSM [110]	163 [35]	47 [35]					Air [35]	
500e	PMSM [182]	200 [112]	83 [112]				12,800 [67]	Water [67]]	9.59 [112]
C-ZERO	PMSM [113]	196 [113]	49 [113]		300 [113]	4,000-8,800 [113]			
iOn	PMSM [115]	196 [115]	49 [115]	35 [115]	300 [115]	4,000-8,800 [115]	9,500 [115]		
i-MiEV	PMSM [117]	196 [117]	49 [117]		300 [117]	4,000-8,800 [117]	9,900 [117]	Water [117]	7.065 [117]
e-Up!	PMSM [118]	210 [118]	60 [118]		2,800 [118]	2,800 [118]	12,000 [118]		8.162 [119]
Spark EV	PMSM [43]	444 [43]	105 [43]					Liquid [43]	3.87 [43]
Bluecar			50 [83]	35 [83]					
MiniCab	PMSM [122]	196 [121]	30 [121]	25 [121]	3,000 [122]	2,500-6,000 [122]			7.065 [121]
i3	HPMSM [29]	250 [77]	125 [77]	75 [77]	5,000 [65]		11,400 [29]	Liquid [65]	9.7 [77]
Zoe	SM, w.r. [46]	220 [46]	65 [46]		2,500 [46]	3,000-11,300 [46]	11,300 [46]		9.32 [183]
C30 El.		250 [78]	89 [78]						
e-Golf	PMSM [125]	270 [125]	85 [125]	50 [184]	3,000 [185]	3,000 [185]	12,000 [125]		9.747 [125]
Leaf'15	IPMSM [56]	254 [127]	80 [127]		3,008 [127]	3,008-10,000 [127]	10,500 [127]	Water [56]	8.1938 [127]
Leaf'16	SM [128]	254 [128]	80 [128]		3,008 [128]	3,008-10,000 [128]	10,500 [128]		8.1938 [128]
FIT EV	PMSM [130]	256 [130]	92 [130]		3,056 [130]	3,695-10,320 [130]	10,320 [130]		8.058 [130]
Fluence.	SM, w.r. [60]	226 [60]	70 [60]	35 [63]	2,500 [164]	3,000-8,900 [164]	11,000 [48]		9.34 [60]
Focus EV	PMSM [103]	250 [133]	107 [133]			5,500 [155]		Liquid [49]	7.82 [155]
Soul El.	IPMSM [55]	285 [134]	81.4 [97]		2,730 [134]	2,730-8,000 [134]		Liquid [97]	8.206 [134]
B-Class El.Dr.	IM [135]	340 [135]	132 [135]	65 [135]		9,900-12,500 [135]		Liquid [57]	9.73 [136]
e6	PMSM [137]	450 [137]	90 [137]				7,000 [186]	Liquid [98]	6.844 [186]
e-NV200	IPMSM [140]	254 [90]	80 [90]				10,500 [140]		7.938 [90]
RAV4 EV	IM [84]	370 [84]	115 [84]					Liquid [70]	9.73 [84]


Motor Design Limited

E. Grunditz and T. Thiringer – IEEE Transactions on Transportation Electrification, VOL. 2, NO. 3, SEPTEMBER 2016, p. 270 - 289

	EM	EM Max.	EM Max.	EM Cont.	EM Speed at max.	EM Speed at max.	EM Max.		
Model	Motor type	Torque (Nm)	Power (kW)	Power (kW)	Torque (rpm)	power (rpm)	Speed (rpm)	EM Cooling	Transm. Ratio
ModelS 60	IM Cu. [187]	430 [188]	283 [189]		5,000 [188]	5,000-8,000 [190]	16,000 [28]	Liquid [28]	9.73 [187]
ModelS 70	2 IM Cu. [59]	441 [59]	285 [59]					Liquid [59]	
ModelS 70D	2 IM Cu. [59]	525 [59]	F,R:193 [59]					Liquid [59]	
ModelS 85	2 IM Cu. [59]	441 [59]	285 [59]		5,800 [188]	6,000-9,500 [190]	16,000 [28]	Liquid [59]	9.73 [187]
ModelS 85D	2 IM Cu. [59]	658 [59]	F,R:193 [59]		5,800 [188]		16,000 [28]	Liquid [59]	9.73 [187]
ModelS P85D	3 IM Cu. [59]	967 [59]	F:193 [59] R:375		5,100 [188]	5,000-8,600 [190]	16,000 [28]	Liquid [59]	9.73 [187]
ModelX 90D			F,R: 193 [142]						
ModelX P90D			F:193 [142] R:375 [142]						
Roadster	IM [143]	370 [143]	225 [143]		5,400 [143]	5,000-6,000 [143]	14,000 [143]	Air [143]	8.28 [143]
Concept One	4 PMSM [96]	1600 [96]	800 [96]		6,500 [96]		12,000 [96]	Oil [96]	3.5 [174]
SLS AMG El.Dr.	4 PMSM [68]	1000 [68]	552 [68]				13,000 [68]	Liquid [85]	
Lightning GT	2 EM [74]	4000 [74]	300 [74]						5.5 [176]
SP:01 Pure		280 [31]	150 [31]						
SP:01 Perf.		280 [31]	210 [31]						
Fetish	PMSM [148]	380 [148]	220 [148]						
America	2 PMSM [149]	480 [150]	300 [150]		6,000 [149]		10,500 [149]		
Coupe	2 Ax.Flux [61]	1355 [61]	368 [61]						
R8 e-tron	2 EM [37]	920 [30]	340 [30]						
LAMPO 3	3 HSM [152]	900 [152]	420 [152]		4,500 [152]			Water [152]	6.4 [152]

- > Many choices to be made when designing a motor:
 - ➤ BPM, Induction, Synchronous Reluctance, SRM
 - Design Variables
 - ➤ Slots/poles, Magnet Type, IPM design, Dimensions
 - Winding Type
 - ➤ Distributed, Tooth Wound, Bar/Hairpin, Litz, Cu/Al
 - ➤ Cooling Type
 - Air, Water Jacket, Rotor Fluid, Slot Oil, Oil Spray

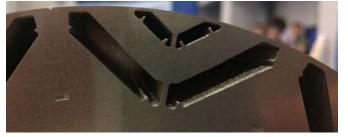
Chevrolet Volt (Generation 2)

- >50kW Ferrite and 100kW Nd-Fe-B IPM motors
- ➤ Hairpin windings
- ➤ EV range over 50 miles but no fast charge

GEN2 VOLT ELECTRIC MOTOR DRIVE UNIT

Motor A

• 12 Pole Ferrite IPM

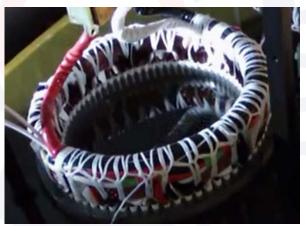

• 50 kW

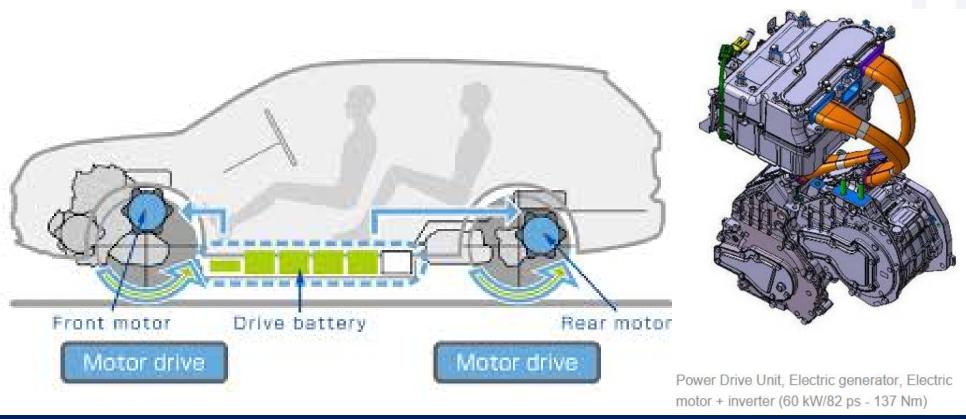
• 11000 RPM

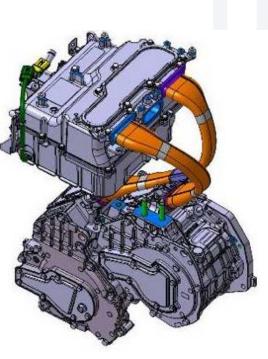
Motor B

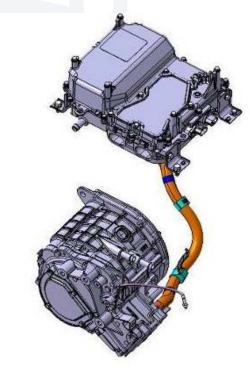
- 12 Pole Dysprosium Diffused NdFeB IPM
 - · 100 kW +
 - 12000 RPM

BMW i3


- ➤ 125kW NdFe-B- IPM Motor
- ➤ 18.8 kWh lithium iron battery (range extender option)
- ➤ Around 80 mile range
- ➤ New model has 1.5 range with larger battery







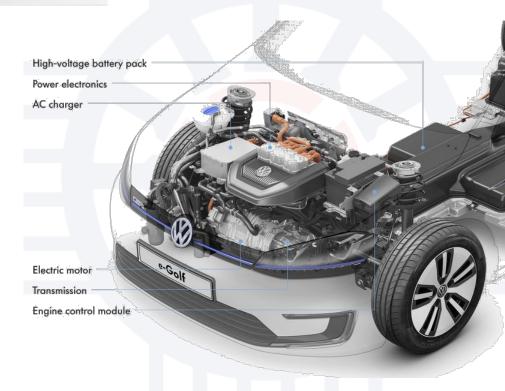
Mitsubishi Outlander PHEV

- Twin 60kW electric motor 4WD with 2.0-liter gasoline engine
- >Around 30 mile range on electric published value (less in practice)
- Can work in pure EV, series hybrid and parallel hybrid modes

Rear Motor Control Unit, Electric motor + inverter (60 kW/82 ps - 195 Nm)

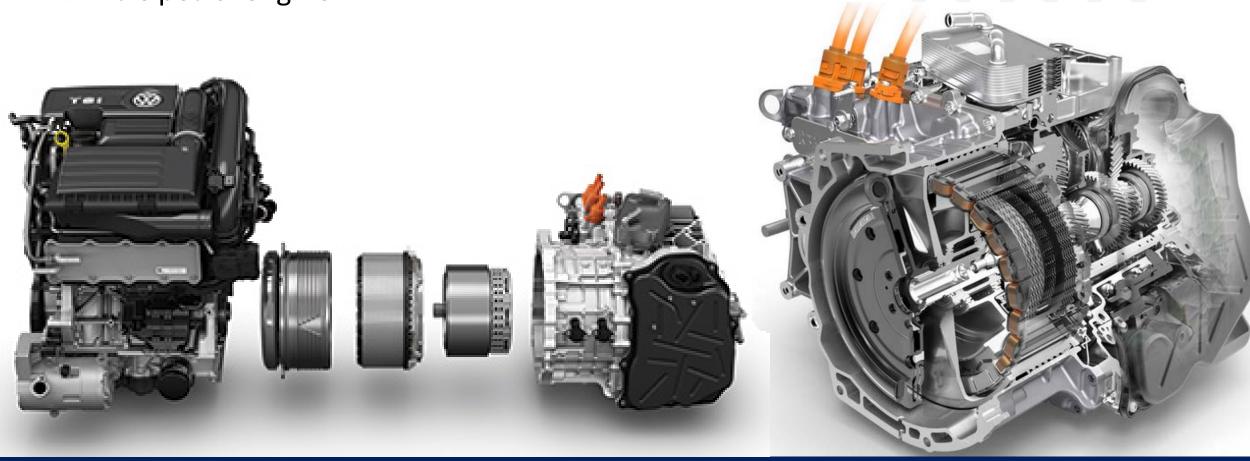
Renault Zoe

- ➤ Small low cost all electric EV
- ➤ Battery hire rather than purchase
- ➤ Around 100 mile range
- ➤65kW wound field synchronous motor



VW e-Golf

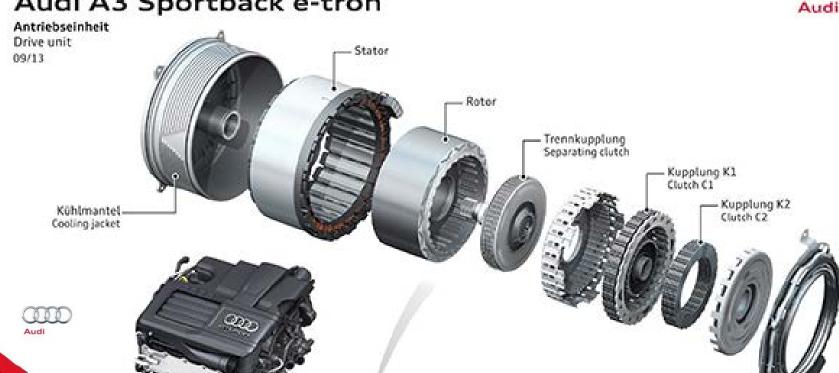
- ➤ All electric BEV
- ➤118 mile range
- ➤ 85 kW 12,000rpm PM motor
- >0 to 60 km/h within 4.2 seconds
- ➤up to 100 km/h 10.4 seconds
- >top speed electronically limited to 140 km/h (87 mph)
- ➤ single-speed gearbox



VW GTE

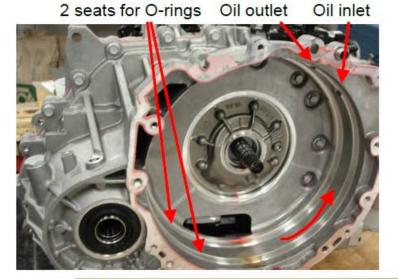
- ➤31 mile electric mile range PHEV
- >75-kW three-phase, permanent magnetic electric motor

➤ 1.4-litre petrol engine



Audi A3 e-tron

- ➤31 mile EV range PHEV
- >multi-speed transmission
- ➤ 102-hp electric motor

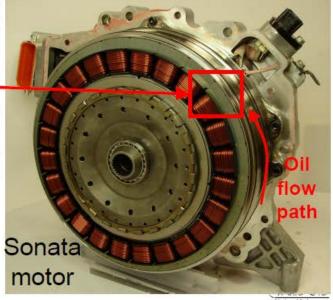


Hyundai / Sonata

Sonata transaxle/transmission

- Conventional 6 speed transmission
- Motor replaces torque converter
 - · But not simply interchanged
- Primary motor: 205 Nm and 30 kW ratings
 - Approximate corner speed: 1400 rpm
 - · Motor very similar to Honda hybrids
 - · 24 stator teeth and 16 rotor poles
- Resolver similar to Toyota/Honda
- 3-phase oil pump
- Clutch integrated into motor rotor
- Oil cooling path around stator

➤ Radial Flux PM Motor

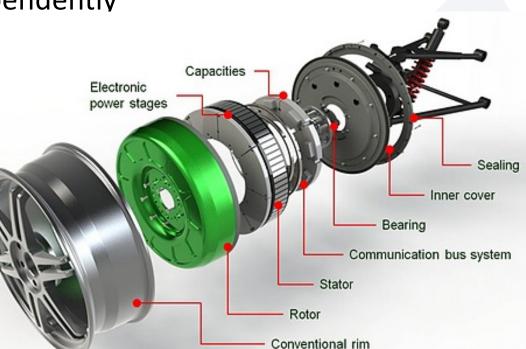


Source: ORNL, US DE report 2012

EM-Motive (information in public domain)

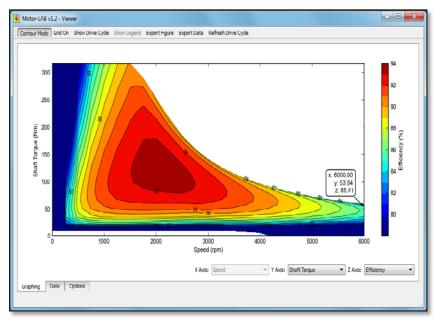
Motor Design Limited

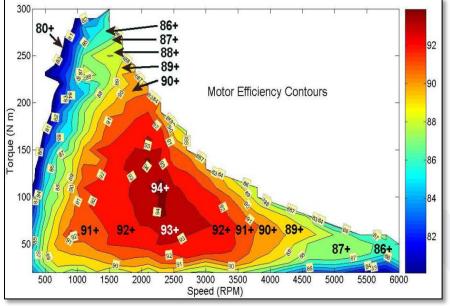
- ➤ Joint venture Bosch Daimler
- > Dimensions and weight
 - > Stator diameter 138 mm
 - ➤ Length of active parts 80 mm
 - Casing diameter 162 mm
 - ➤ Housing length 185 mm
 - ➤ Weight 14 kg
- > Performance
 - Operating voltage max. 300 V
 - ➤ Mechanical Power max. 20 kW
 - Torque max. 55 Nm
 - > Speed max. 18,000 1/min



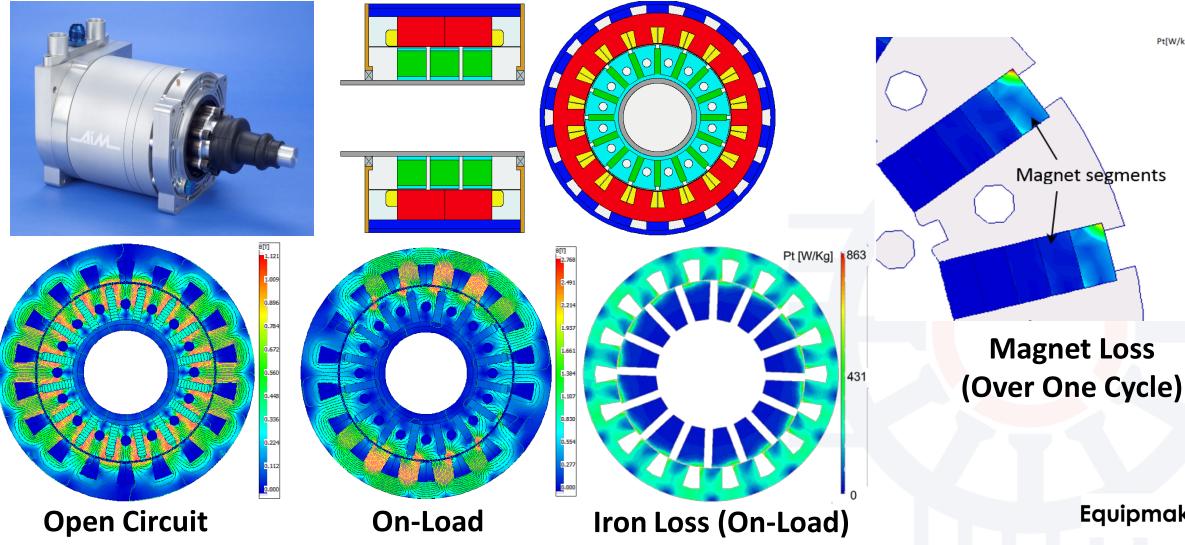
Protean Electric – In Wheel Motor

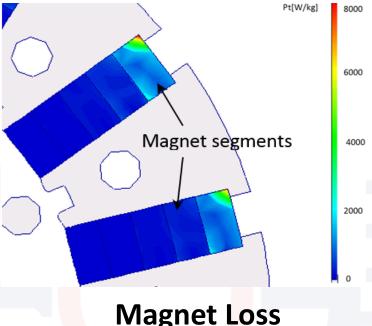
- Direct drive solution
- Outer-rotor BPM motor
- > 75kW Peak, 54kW Cont.
- > 420mm OD, 115mm long
- > Each motor is controlled independently
- > Retrofit possible
- ➤ Mahle PHEV shown




Toyota PRIUS

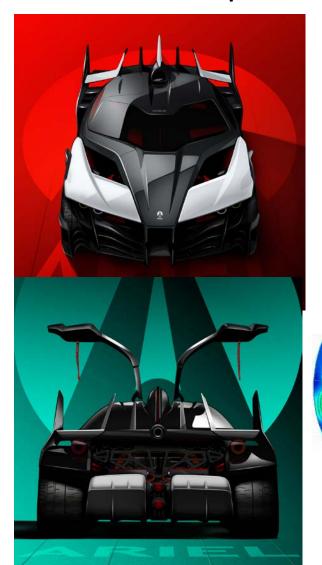
➤ Validation based on Toyota 2004 Prius test data from ORNL published at between 2004 -2012


Motor-LAB Calculation


Measured Efficiency Map

High Performance Motorsport Motor

➤ High torque density motor for motorsport

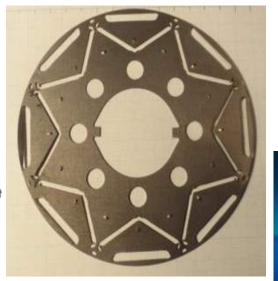

High Performance Motorsport Motor

➤ High torque density motor for Motorsport

➤ Used in Ariel Hipercar

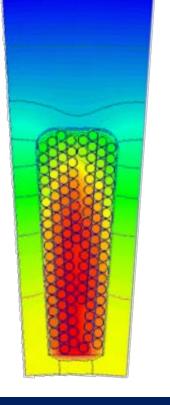
Open Circuit

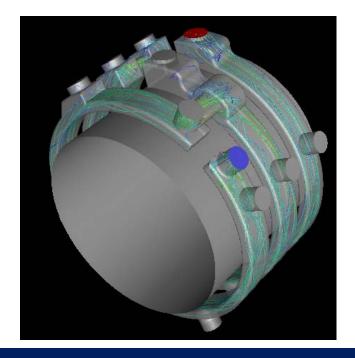
On-Load

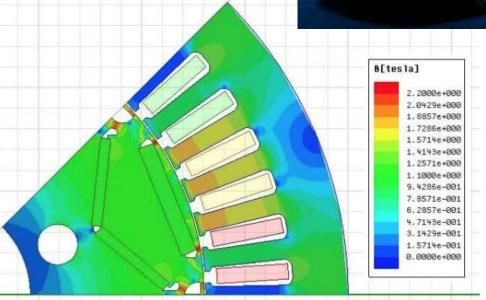

Equipmake 🛑

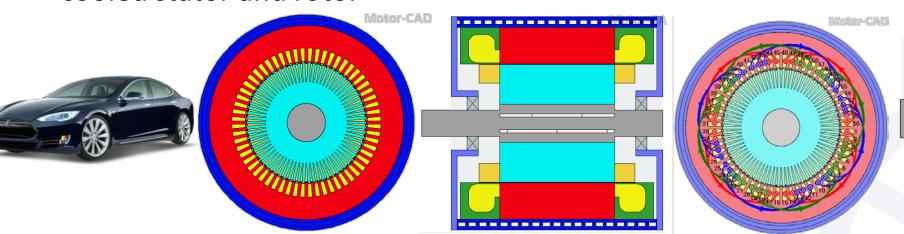
Motor

Nissan LEAF

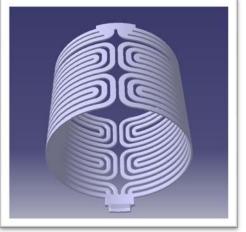

- ➤ All electric BEV
- ➤ 124 mile range
- ➤80kW IPM Motor

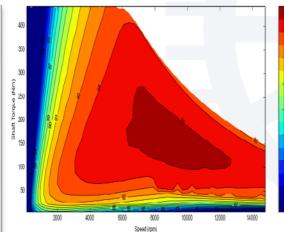




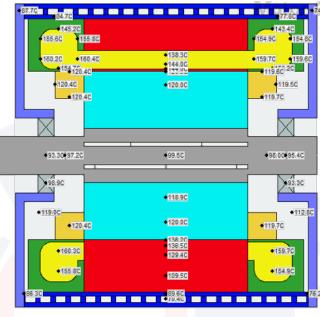


TESLA Model S


> Data from teardown analysis of the Tesla Model S electric motor


> Copper rotor induction motor with potted end windings and water

cooled stator and rotor



Summary

- Electrification is driving forward the development of innovative designs electrical machines
- ➤ Automotive HEV more dynamic and easier to implement mass production in most OEMs by 2020-2030
- Aerospace more restrictive due to technology risks (battery limitation) and market demands.
- Traction, power generation and auxiliaries in aerospace, automotive are possible applications
- Mainly permanent magnet technology is currently developed, but significant interest in induction and reluctance machines
- > Copper, as best solution cost and electrical conductivity is part of design process in windings with high fill factor (all) and cage rotors (induction machines only)

Joint Motor Actions ECI – proposals from MDL

- Tutorials on electrical motors and copper element at various expos and conferences
- Series of white papers on copper role in energy conversion systems
- How can we link industrial knowledge with academia curriculum? Open sessions/seminars at Universities?
- Edit a book on electrical machines with focus on copper element: windings, rotor cage, superconducting, banding; multiple authors/experts

Motor Design Software by Motor Design Engineers

Motor Design Ltd

5 Edison Court | Wrexham | LL13 7YT | UK Tel. +44 (0)1691 623305